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Lesson 10: Limits and Continuity 
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Limit of a function 
 The concept of limit of a function is central to all other concepts in calculus (like 

continuity, derivative, definite integrals etc. as we will see later).  

 To understand the concept, consider the function f(x) = x2. What value does the 

function f “approach”, when x “approaches” 2?  

It approaches 22 = 4. What does this mean? 

 It means that the difference between f(x) and 4 can be made as small as we please, if 

the difference between x and 2 is made sufficiently small. 

 We say that the limit of the function x2 as x approaches 2 is the value 4. 

 In general, a function f(x) has a limit L as x approaches “a”, if f(x) can be made as 

close to L as we like, for all x sufficiently close to a. We write this as: 

 lim ( )
x a

f x L




2

2 2

1 1

2 2

3 3

( ) 3 1

lim ( ) lim(3 1) 3.1 1 1 5

lim ( ) lim(3 1) 3.3 3 1 31

x x

x x

g x x x

g x x x

g x x x

 

 

  

      

      

Example: Let 
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Does it mean, that to evaluate the limit of f(x) as x approaches “a”, we just evaluate f(a)? Not always (the 

limit is f(a) only for continuous functions, as we will see later). In fact, f(a) need not be defined for the 

limit to exist. 



Limit of a function (continued) 

( ) 1 0

0 0

 for 

 for 

u x x

x

 

 

When x approaches 0 from 

the right, u(x) is 1 

When x approaches 0 from 

the left, u(x) is 0. 
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Consider the function f(x) below (note a function can have different definitions, in different parts 

of its domain): 

2

2

1

( ) 1,

( ) 2 1

lim ( ) 1 1 (1) 2
x

f x x x

f x x

f x f


 

 

  

 for  and

 for 

 but 

To determine the limit of f(x) as x approaches “a”, we need to know the behavior of f(x) for x near “a”. In 

the above example, even if f(1) was undefined, the limit would still be 1. This is because the behavior of 

f(x) near 1, depends on the behavior of x2 (the function definition near 1). 

In general, we don’t define limit for a point x = a; instead we define it for “x approaches a”. 

Consider the unit step function u(x) shown below. What is its limit as x approaches 0? 

As you might have guessed, u(x) does not have a limit 

as x approaches 0. 

When x approaches 0 from the right (values greater 

than 0), u(x) has the limit 1 (called the right hand 

limit); when x approaches 0 from the left (values less 

than 0), u(x) has the limit 0 (called the left hand limit). 



Right hand and Left hand limits 

lim ( )
x a

f x L




lim ( )
x a

f x L



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So by definition, f(x) has a right hand limit L as x approaches “a”, if f(x) can be made as close to 

L as we like, for all x greater than but sufficiently close to “a” (x approaches “a” from the right 

along the x axis). We write this as: 

Similarly, f(x) has a left hand limit L as x approaches “a”, if f(x) can be made as close to L as we 

like, for all x less than but sufficiently close to “a” (x approaches “a” from the left along the x axis). We 

write this as: 

For f(x) to have a limit as x approaches “a”, both the right hand and left hand limit as x approaches “a” 

must exist and they must be equal. The unit step function u(x) does not have a limit when x 

approaches 0, since the right hand and left hand limit are different.  



Scenarios when the limit does not exist 
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When x approaches 1 from 

the right, the function has 

a value 1. 

When x approaches 1 

from the left, the function 

has a value 0. 

For the greatest integer function, the right 

and left hand limits are not equal (and hence 

the limit does not exist), when x approaches 

any integer value.  

1
( )f x

x


The function f(x) = 1/x approaches infinity as x 

approaches 0 from the right, and approaches minus 

infinity as x approaches 0 from the left.  

Infinity is not a number, hence neither the right hand nor 

left hand limit exists when x approaches 0. 

f(x) approaches infinity, means that f(x) can be made 

larger than any value we choose; for all values of x 

greater than but sufficiently close to 0. 



Scenarios when the limit does not exist 

(continued), and using infinity in limits 

1
( ) sinf x

x

 
  

 
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A less common example of limit not existing is the 

function f(x) = sin(1/x) as x approaches 0. To 

understand this example, you must know how the sin 

function is defined for all values of x.  

The function rapidly oscillates between −1 and +1 (as 

we come close to 0), and never approaches any 

specific value. So both the right hand and left hand 

limit does not exist when x approaches 0. 

Though infinity is not a number, it is convenient to use it in expressions as shown below. 

0

1
lim

1
lim 0

x

x

x

x





 



a) 

b) 

Example a) is what we have already seen.  

Example b) says that 1/x can be made as close to 0, as we please; by making x 

sufficiently large. 



Limit rules 
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 

 

 

lim ( ) lim ( )

lim ( ) ( )

lim ( ) ( )

lim ( ) ( )

( )
lim

( )

x a x a

x a

x a

x a

x a

f x L g x M

f x g x L M

f x g x L M

f x g x L M

f x L

g x M

 









 

  

  

 

 

Limit rules

Let  and . Then

    (sum rule)

    (difference rule)

        (product rule)

  when M 0 (quotient

 
/ /lim ( )

r s r s

x a
f x L




 rule)

 where r and s are integers (power rule)

The above rules seem reasonable; for example, if f(x) approaches L and g(x) approaches M, as x 

approaches “a”, we expect  the sum f(x) + g(x) to approach L + M, as x approaches “a”. 

The limit rules can be used to determine the limit, when functions are combined via operations of 

addition, multiplication etc. 



Some limit examples 
lim

lim

lim lim lim ... lim lim ... lim

x a

x a

n

x a x a x a x a x a x a

x a

k k

kx k x x x k x x x





     





       
n times

n times

 where k is a constant

If k is a constant and n is a positive integer, then (applying the product rule)

nka  

1

1 1 0

1

1 1 0

1

1 1 0

lim ( )

( )

( ) ...

lim lim ... lim lim

...

n n

n n

n n

n n
x a x a x a x a

n n

n n

x a
P

P x a x a x a x a

a x ax

P a

x a x a

a a a a a a a








   







    

  



 

    

If  ( ), then

(applying the sum rule, and the above 

polynomial function

result)

lim ( )( ) ( )
lim

( ) lim ( ) ( )

x a

x a

x a

P xP x P a

Q x Q x Q a







  

If P(x) and Q(x) are polynomial functions, then (using quotient rule and above result)

 when Q(a) 0

Note, ratio of two polynomial functions is cal rl aed a tional function.
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Some limit examples (continued) 
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If Q(a) = P(a) = 0, then (x – a) is a common factor, and we can cancel it out to evaluate the limit 

of the rational function P(x) / Q(x) as x approaches “a”. If Q(a) = 0, and P(a) ≠ 0, then the limit 

does not exist as x approaches “a”. 

   

   

2
2

2

2

2

4
Example: Evaluate lim . Both 4 and 2 become zero at 2 (called the 0/0 form). 

2

2 2
But the limit can be written as lim

2

For 2,  we can cancel 2  and write lim 2 4. So the lim

x

x

x

x
x x x

x

x x

x

x x x








  



 



    it is 4.

In case, you are thinking why we added the condition x ≠ 2, then consider the definition of division. 

a/b by definition is ab−1, where b−1 is the multiplicative inverse of b. A number x is the multiplicative 

inverse of y (and vice versa) if xy = 1. All real numbers except 0, have a multiplicative inverse; hence 

division by zero is undefined.  

In the above example, division by (x – 2) is undefined when x = 2, so we add the condition. From a 

limit viewpoint also, exclusion of x = 2 makes sense, because we are interested in the behavior of 

the function near x = 2. 



Some limit examples (continued) 
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1Example: Show that  (where n is a positive integer)l .im
n n

n

x a

x a
na

x a










    1 2 3 2 2 1

1

Solution : We could divide  by –  to get 

– ...  (for )

Another way is to treat the right side as a geometric series with first term  and ratio / .

We then 

n n

n n n n n n n

n

x a x a

x a x a x x a x a xa a x a

x a x

    





       

 

 

1

1 2 3 2 2 1

1 2 3 2 2 1

1 2 2 1 1 1 1

1 /
have ...

1 / –

lim lim ...
–

lim lim ... lim lim ...n times 

nn
n n

n n n n n

n n
n n n n n

x a x a

n n n n n n n

x a x a x a x a

x a x x a
x x a x a xa a

a x x a

x a
x x a x a xa a

x a

x x a xa a a a na



    

    

 

      

   

         



      

        



Continuity of functions 
 Let us now consider the closely related concept of continuity of functions. A function is 

continuous if the graph of the function has no breaks: within its domain, it is a continuous curve. 

 A function y = f(x) is continuous at a point x = a in its domain if 

lim ( ) ( )
x a

f x f a




 So by definition, the limit of a continuous function as x approaches “a” is the same as f(a), a fact 

that we have used before to evaluate limits.  

 Note that continuity (unlike limits) can be defined for a point. 

 At an endpoint of the domain, the relevant one sided limit is used in the definition. 

 So at the left endpoint, it is the right hand limit; and at the right endpoint, it is the left hand limit. 

This means that if the function domain is [a, b], then at x = a and x = b, the function is 

continuous if 

 lim ( ) ( )                 lim ( ) ( )
x a x b

f x f a f x f b
  

 

 A function is continuous on an interval if it is continuous at every point in the interval. 

 A continuous function f(x) is continuous at every point in its domain. 

 This does not imply that f(x) is continuous on any interval, because this may include points 

outside the domain. However f(x) is continuous on any interval fully contained in its domain. 

 If a function f(x) is not continuous at x = a, we say it is discontinuous at x = a, and  “a” is a point 

of discontinuity of f. 
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Continuity of functions (continued) 
 So if x = a is a point of discontinuity for f(x), then one of the following holds: 

 limit of f(x) as x approaches “a” does not exist 

 the limit exists, but is either not equal to f(a), or f(a) is undefined.  

 When f(a) is undefined, the point x = a is not part of the function domain. But we can still 

define the limit of f(x) as x approaches “a”, if f(x) is defined near “a”.  

 Some examples are given below: 

 Polynomial function P(x) is continuous, as well as the rational function P(x) / Q(x). 

 Note points where Q(x) = 0 are not part of the function domain. So f(x) = 1/x is a 

continuous function. 

 Absolute value function |x| is continuous. 

 The greatest integer function is discontinuous at all integer values. 

 The unit step function u(x) is discontinuous at x = 0 (everywhere else it is continuous). 
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Question: Determine if the following function is continuous 

f(x) = −2x + 3 for x < 0 and  

      = (√3 – x)2 for x ≥ 0.   

Solution: Both (−2x + 3) and (√3 – x)2 are polynomials, hence they are continuous. But near x = 0, 

the different definitions of f(x) may not approach the same value, hence there can be a break.  

However this is not so (therefore the function is continuous), since  

   
2

0 0

lim 2 3 3 and lim 3 3 and (0) 3.
x x

x x f
  

     



Continuity rules 

SCIMS Academy 13 

If functions f(x) and g(x) are continuous at x = a, then the following combinations are also 

continuous at x = a. 

             

     

/ /

a)        b) 

c) ( )           d) (x) or (x) provided the denominator is not 0.

e) or  where r and s are integers (assuming the definition makes senser s r s

f g x f x g x f g x f x g x

f g
f g x f x g x

g f

f g

     

   
      

   

).

This readily follows from the limit rules, for example 

   

 

lim ( ) lim ( ) ( )  by definition of function sum

= lim ( ) lim ( ) by limit rule for a sum of two functions

( ) ( ) since f and g are continuous at 

( )  so the sum function is c

x a x a

x a x a

f g x f x g x

f x g x

f a g a x a

f g a

 

 

  



  

  ontinuous at x a

Function composition: If g(x) is continuous at x = a, and f(x) is continuous at g(a), then the composite 

f(g(x)) is continuous at x = a. 



Properties of continuous functions 
 Intermediate Value Theorem: If f(x) is continuous on a closed interval [a, b], then it 

takes on every value between f(a) and f(b).  

 This means that if y0 is some value between f(a) and f(b), then there exists a point x = c 

in [a, b] such that f(c) = y0. 

 Extreme Value Theorem: If f(x) is continuous on a closed interval [a, b], then f(x) has 

an absolute minimum m and an absolute maximum M in [a, b]. This  

means that: 

 There exists x1 and x2 in [a, b] such that f(x1) = m and f(x2) = M, and for all other  

x in [a, b], m ≤ f(x) ≤ M 

 With the previous theorem, it implies that f(x) takes on every value between m and M  

in [a, b]. 

x = a x = b = x2 

f(x1) = m 

f(x2) = M = f(b) 

f(a) 

x = x1 

Graph of an arbitrary 

function f(x) 

y0 

x = c c’ 

14 SCIMS Academy 



Explanation on the two theorems 
 The conditions stated in the Intermediate Value Theorem (IVT) and Extreme Value 

Theorem (EVT) are necessary, as we see below. 

 Consider f(x) = x in [0, 1) and (x + 1) in [1, 2].  

 f(0) = 0 and f(2) = 3. But f(x) does not have any value in [1, 2) because of the 

discontinuity at x = 1. We cannot apply IVT to the interval [0 , 2], but we can apply it to 

the interval [1, 2]. 

 Consider f(x) = x defined on (0, 2). The interval is open, and the function doesn’t have 

an absolute maximum or minimum value.  

 If the domain is changed to (0, 2], then f(x) has an absolute maximum of 2 at x = 2, but 

it has no absolute minimum. 

 If the domain is changed to [0, 2], then f(x) also has a minimum of 0 at x = 0. 

 Think about it, if the above is not clear. For example, in the open interval (0, 2), we can 

make x as “close to 0” as we like, but we still have an infinite number of points (like x/2, 

x/3,...) which are smaller than x; hence there is no minimum. 

 If f(x) = x in [0, 2) and f(2) = 0 producing a discontinuity at x = 2, then f(x) has no 

absolute maximum.  

 In summary, to apply EVT to an interval, the interval must be closed, and f(x) must be 

continuous on that interval. 
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Optional: What follows is a more formal look at the limit 

concept (needs prior knowledge of inequalities, involving 

absolute values). 



Formal definition of limit  
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We said that a function f(x) has a limit L as x approaches “a”, if f(x) can be made as close to L as we 

like, for all x sufficiently close to “a”. 

The formal definition given below defines “closeness” in a precise way. 

The function f(x) has a limit L as x approaches “a”, if given any positive ε (however small), we can find 

a positive δ, such that |f(x) – L| < ε when 0 < |x – a| < δ. 

|f(x) – L| < ε means that f(x) lies in the open interval (L – ε, L + ε). Let us call this “interval 1”. By making 

ε smaller, interval 1 becomes smaller, and f(x) stays closer to L.  

Similarly 0 < |x – a| < δ means that x lies in the open interval (a – δ, a + δ) but is never equal to “a”. Let 

us call this “interval 2”. By making δ smaller, interval 2 becomes smaller, and x stays closer to “a”.  

By choosing ε, we fix interval 1 in which we want f(x) to be present. The definition says that when the 

limit exists, we can find an interval 2 around “a”, such that for all values of x in interval 2; f(x) stays 

within interval 1. In other words, f(x) can be kept as close to L as we like (less than ε away from L), for 

all x sufficiently close to “a” (less than δ away from “a”). 

Note the definition does not help us to find L, but validates whether a given L is the limit (though the 

procedure is not always straightforward). 

 
1

Example: Consider lim 2 3 2 1 3 5. Let us use the limit definition to prove that 5 is the limit.

( ) 2 3 5 2 1 1 / 2

x
x

f x L x x x  


    

          

Note the last inequality helps us to define interval 2. If δ = ε/2 or smaller, then |f(x) – 5| < ε when  

0 < |x – 1| < δ (which proves that 5 is the limit). 



Formal definition (continued) 
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Example: Prove lim  for 0.
x a

x a a


 

Solution: We need to find  such that  when 0 .

. 

If we find a positive constant C, such that ,  and if we choose  or smaller, 

we have 

x a x a

x a
x a

x a

x a C C

x a x a
x a x a C x a

C x a

  

 

 

    

    


   



  

 
           



Note the basic idea is to relate |f(x) – L| to |x – a|. Since √x > 0, we can set C = √a, and  

δ = ε√a or smaller (proving that √a is the limit).   

The function √x is defined for all x ≥ 0, so at x = 0, only the right hand limit exists. A function f(x) has 

a right hand limit L as x approaches “a”, if given any positive ε, we can find a positive δ, such that 

|f(x) – L| < ε when 0 < x – a < δ (or equivalently a < x < a + δ). Let us formally show that the right 

hand limit of √x is 0, as x approaches 0. 

|√x – 0| < ε → x < ε2. Therefore δ can be chosen as ε2  or smaller; which means that the right hand 

limit is 0. The above discussion also shows that √x is a continuous function. 

We can come up with similar formal definitions for other scenarios: For example, we say that f(x) 

approaches infinity as x approaches “a”, if for any positive M (however large), we can find a positive 

δ, such that f(x) > M when 0 < |x – a| < δ. 


