Lesson 03: Functions

Functions - an informal viewpoint

- Whenever one value "y" depends on (or is determined by) another value " x ", we say that y is a function of x. e.g.
- Area A of a circle is a function of its radius r.
- The temperature T at a place on a given day, is a function of time during the day (t).
- The height (H) of a person is a function of the person's age (x).
- The function can be considered as a rule or a formula that gives the value y, when the value x is given to it.

Function definition

- A set is a collection of objects. These objects are called elements of the set e.g.
- $A=\{1,4,9,16,25,36,49\}$ or equivalently $A=\left\{x\right.$: $x=n^{2}$, where n is a natural number and $1 \leq \mathrm{n} \leq 7\}$
- $B=\{a, e, i, o, u\}$
- $C=\{x: 0 \leq x<\infty\}$
- $\mathrm{D}=[0,1] \quad$ (equivalent to $\{x: 0 \leq x \leq 1\}$)
- $E=(0,2]$ (equivalent to $\{x: 0<x \leq 2\})$
- A function from set A to set B is a rule that assigns a unique (single) element $f(x)$ in B to each element x in $A . e . g$.
- $y=f(x)=x^{2}$
- f is the symbol used to denote the function. $f(x)$ read as " f of x " or the "value of f at x " is the value that f assigns to any x in set A. Since $f(x)=x^{2}$ here, the function f assigns the value x^{2} to each x in A.
- x and y are variables. Since $y=f(x), y$ takes the value that the function f assigns to x in A. x can take on any value in A and the corresponding value of y depends on x (with the function f determining the value of y for a given x). Therefore, x is called an independent variable while y is called a dependent variable.

Function definition (continued)

- A function from set A to set B is also denoted as $f: A \rightarrow B$. e.g.
- $f: R \rightarrow R$ and $y=f(x)=x^{2}$ (R denotes the set of all real numbers).
- A and B are usually sets of real numbers (like sets C, D and E above).
- Function is denoted by letters like f, g, h etc.
- Set A is called the domain of the function. When not stated explicitly, it is the largest set of real values x for which $f(x)$ is real.
- All values that $\mathrm{f}(\mathrm{x})$ can have (as x varies through the domain) is called the range of the function. Range is a subset of B.
- For $y=f(x)=x^{2}$, the domain is all real values $x(-\infty, \infty)$, while the range is all real values $\geq 0[0, \infty)$.
- Different values of x can be assigned to the same value by f. e.g.
- $f\left(x_{1}\right)=f\left(x_{2}\right)$ for $x_{1} \neq x_{2}$ is a valid assignment by f.
- An arrow diagram has an arrow from x in set A to $f(x)$ in set B to pictorially show the assignment done by the function. e.g. for $f(x)=x^{2}$

Function examples

- Area A of a circle is a function of its radius r
- $A=f(r)$: This says that the variable A is the value of function f at r. But what is function f ?
- $f(r)=\pi r^{2}$: This says that the value of function f at r is equal to πr^{2}. Now the function is defined.
- $A=f(r)=\pi r^{2}$: This says that the variable A is equal to the value of the function f at r, which is equal to πr^{2}. Thus, we have expressed the circle area A as a function of radius r.
- \quad Consider $f(x)=3 x^{2}+8$
- $f(1)=3 .(1)^{2}+8=11$
- $f(2)=3 .(2)^{2}+8=20$
- Domain of the function is all real values x.
- Range is $[8, \infty)$. Why? $x^{2} \geq 0$, so the min value of $3 x^{2}+8$ is 8 .

Some functions and their graphs

Graph of a function $f(x)$ is the set of all points (x, y) in the coordinate plane such that $y=f(x)$. x takes all values in the domain of $f(x)$.

Odd Powers of x
Note range for these functions is $(-\infty, \infty)$

Even Powers of x
Note range for these functions (except the constant function) is $[0, \infty)$

Polynomial function of degree n has the form $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}\left(\mathrm{a}_{\mathrm{n}} \neq 0\right)$

Common functions (continued)

Greatest integer function written as $y=f(x)=\lfloor x\rfloor$ assigns to each x , the greatest integer less than or equal to x.
Note the range consists of all integers. Also y jumps from one integer to the next, e.g. from 2 to 3 , as x changes from "a little less than 3 " to 3 .

Absolute value function $y=f(x)=|x|$ is defined as

$$
\begin{aligned}
y & =x, \text { when } \mathrm{x} \geq 0 \\
& =-x \text { when } \mathrm{x}<0
\end{aligned}
$$

The graph consists of the blue lines and the dots.
The sloping black line $y=x$, acts as a reference.
Dots (found at integer values) indicate that the point
belongs the graph of $\lfloor x\rfloor$.

Sum, difference, product and quotient of functions

For every x in the domain of both functions $\mathrm{f}(\mathrm{x})$ and $\mathrm{g}(\mathrm{x})$; the sum, difference, product and quotient are defined.

Sum $(f+g)(x)=f(x)+g(x)$
Difference $(f-g)(x)=f(x)-g(x)$
e.g. the value of the sum function $(f+g)$ at x, is the value of the function f at x, plus the value of the function g at x.

Product $(f g)(x)=f(x) g(x)$
Quotient $\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)} \quad$ Also, $\mathrm{g}(\mathrm{x})$ must not be 0

Example:
Let $\mathrm{f}(\mathrm{x})=\sqrt{x+1}$ and $\mathrm{g}(\mathrm{x})=\sqrt{4-x^{2}}$
Domain of $f(x)$ is $[-1, \infty)($ since $x+1 \geq 0)$
Domain of $g(x)$ is $[-2,2]$ (since $4-x^{2} \geq 0$)
Points common to both domains [-1, 2]

Therefore,
$(f+g)(x)=\sqrt{x+1}+\sqrt{4-x^{2}}$ with domain $[-1,2]$
$(f-g)(x)=\sqrt{x+1}-\sqrt{4-x^{2}}$ with domain $[-1,2]$
$(f g)(x)=\sqrt{(x+1)\left(4-x^{2}\right)}$ with domain [-1, 2]
$\left(\frac{f}{g}\right)(x)=\sqrt{\frac{x+1}{4-x^{2}}}$ with domain $[-1,2)$ since $4-\mathrm{x}^{2}$ must not be 0 .
$\left(\frac{g}{f}\right)(x)=\sqrt{\frac{4-x^{2}}{x+1}}$ with domain $(-1,2]$ since $x+1$ must not be 0

Composite functions

If $f(x)$ and $g(x)$ are functions, then the composite function $f \circ g$ (" f composed with $g^{\prime \prime}$) is defined as $(f \circ g)(x)=f(g(x))$ [the value of function f at $g(x)$]

- Given $a x$ in the domain of g
- function g assigns (maps) it to $\mathrm{g}(\mathrm{x})$.
- If $g(x)$ lies in the domain of f, then $f(x)$ assigns the value $f(g(x))$ to it.
- Therefore, composite ($f \circ g$) is defined for all x where $\mathrm{g}(\mathrm{x})$ lies in the domain of f : basically all x, for which both $g(x)$ and $f(g(x))$ are defined.
- $(g \circ f)(x)=g(f(x)) \neq(f \circ g)(x)=f(g(x))$

Example

Let $f(x)=\sqrt{x+3}$ and $g(x)=2 x$
$(f \circ g)(x)=f(g(x))=f(2 x)=\sqrt{2 x+3}$ with domain $[-3 / 2, \infty)$
$(g \circ f)(x)=g(f(x))=g(\sqrt{x+3})=2 \sqrt{x+3}$ with domain [-3, $\infty)$
$(f \circ f)(x)=f(f(x))=f(\sqrt{x+3})=\sqrt{\sqrt{x+3}+3}$
Since $\sqrt{x+3} \geq 0$ for $\mathrm{x} \in[-3, \infty)$, the domain is $[-3, \infty)$
$(g \circ g)(x)=g(g(x))=g(2 x)=4 x$ with domain $(-\infty, \infty)$

