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Lesson 12: Derivatives (Part 2) 
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Parametric curves 

 Instead of representing a curve using y = f(x), both x and y coordinates can be a 

function of a third variable t. e.g. x = f(t) and y = g(t). 

 t is called the parameter for the curve, and parameter interval refers to the set of 

allowed values of t. 

 The set of points (x, y) = (f(t), g(t)) is called the parametric curve, and the equations 

of x and y (in terms of t) are called parametric equations of the curve.  

 Parametric representation is commonly used in physics, where the x, y (and z) 

coordinates of a particle are expressed as a function of time t.  

 In this course also, we have used parametric equations for conic sections, one of 

which is given below. 

2 2 2 2 2 2 2 2 2 2

Example: cos   sin   where [0,  2 ]

represents a circle with center at origin and radius  because

cos sin (cos sin )

As  increases from 0 to 2 , we trace the circle counter

x a t y a t t
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x y a t a t a t t a

t





  

     

-clockwise once 

starting at point ( ,  0) and ending again at it.a
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Slope of a parametric curve 

2

2

Let ( ) and ( ). Taking  to be an (implicit) function of , 

where  is a function of , we can apply the chain rule to write

Solving for / , we have 

Since 

x f t y g t y x

x t

dy dy dx

dt dx dt

dy dx
dy dy dx

dt dtdx
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
 where 
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y

dt dtdx dx
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Example: Let 1 8  and  6 5 where 

6 3

8 4

Note this is just a line, as can be readily seen by eliminating 

1 5 3 23
 (slope matches the /  value above). 

8 6 4 4

x t y t t

dy dy dx

dt dtdx
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x y
y x dy dx
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   


 
    
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As we will see in a later lesson, the standard form for the parametric equations of a line is  

x = h + rcosθ and y = k + rsinθ (where r can have all real values, and θ is the angle of inclination).  

However by comparing the above example with the standard form, we see that  

rcosθ = −8t and rsinθ = 6t.  

Squaring both and adding gives r2 = 100t2 → t = r/10, and we can write the equations as  

x = 1 – (4/5)r and y = 5 + (3/5)r. 



Extreme values of functions 
 We will now consider an important application of derivatives; namely finding the minimum and 

maximum value of functions. To start with, we need some definitions. 

 We know that if f(x) is continuous in [a, b], then there exist x1 and x2 in [a, b] such that  

f(x1) = m and f(x2) = M, and for all other x in [a, b], m ≤ f(x) ≤ M (Extreme Value Theorem 

seen in an earlier lesson). 

 We call M as the absolute maximum, and m as the absolute minimum of f(x) in [a, b]. Absolute 

maximum and absolute minimum values are also called global (or absolute) extrema values. 

 A function has a local maximum at an interior point c of its domain, if f(x) ≤ f(c) for all x in some 

open interval containing c. Similarly, a function has a local minimum at an interior point c of its 

domain, if f(x) ≥ f(c) for all x in some open interval containing c. 

 Local minimum and local maximum values are also called local (or relative) extrema (plural of 

extremum) values. 

At end points “a” and b, we use a half open 

interval to define local extrema. e.g. x = a has 

a local maximum, if f(a) ≥ f(x) for all x in some 

half open interval [a, d). 

Note every absolute extremum point is also a 

local extremum point. 
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First derivative theorem for local extrema 
 If f(x) has a local extremum (maximum or minimum) at an interior point c of its domain 

and f’(c) exists, then f’(c) = 0. 

 Seems reasonable from the sample graph, since the maximum occurs at a peak, and 

the minimum at a valley (trough), and the tangent appears horizontal at these points. 

 Its proof follows from derivative and local extrema definitions. So let f(x) have a local 

minimum at x = c (the proof for local maximum is similar). We then have, 

( ) ( )
( ) lim

For a minimum point ( ) ( ) for  close to , hence ( ) ( ) 0 

and 0 for  and 0 for 

( ) ( ) ( ) ( )
lim 0  and lim 0 

Since the derivative exis

x c

x c x c

f x f c
f c

x c

f c f x x c f x f c

x c x c x c x c

f x f c f x f c

x c x c 



 


 



  

     

 
  

 

ts at , both right and left hand limits must be equal, which implies 

that both must be zero, i.e. ( ) 0. 

c

f c 
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First derivative theorem for local extrema 

(continued) 
 So the only points in the domain of f(x), where extrema (local or global) can occur 

are: 

 Interior points where the derivative is 0. 

 Interior points where derivative doesn’t exist. 

 End points of the domain. 

 Interior points of f(x) where the derivative is zero or does not exist are called critical 

points of f(x). 

 To find the absolute maximum and minimum of a function continuous on a finite 

closed interval, is now straight-forward: 

 Evaluate f(x) at all the points mentioned above. 

 The point where f(x) has the minimum value is the absolute minimum; where it has the 

maximum value is the absolute maximum (note we still don’t have a rule to say, if the 

other critical points or endpoints have a local maximum or minimum). 

 The conditions “continuous and finite closed interval” are those of the Extreme Value 

Theorem.  
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Rolle’s theorem and Mean Value Theorem 
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Mean Value Theorem :  If ( ) is continuous in [ ,  ] and differentiable in ( ,  ),  

( ) ( )
then there is at least one point  in ( ,  ) such that ( ) .

f x a b a b

f b f a
c a b f c

b a


 



x = a x = b 

Points c of Rolle’s theorem  

c1 c2 c3 

y = f(x) 

x = a x = b x = c 

Point c of Mean Value theorem  

y = f(x) 

f(a) 

f(b) 

Rolle’s Theorem: If f(x) is continuous in [a, b] and differentiable in (a, b) and f(a) = f(b), then 

there is at least one point c in (a, b), where f’(c) = 0. 

Means that when f(a) = f(b), and the graph is a smooth curve between x = a and x = b, there is at 

least one point in between where the tangent is horizontal. 

Note [f(b) – f(a)] / (b – a) is the slope of the secant through the points (a, f(a)) and (b, f(b)) on the 

graph. So if the graph between these points is a smooth curve, then there is some point in between, 

where the tangent is parallel to this secant.  

Both the theorems seem intuitively reasonable, and we will skip the formal proof. 



Consequences of the mean value theorem 
 Corollary 1: If f’(x) = 0 in an interval (a, b) then f(x) = c in that interval, where c is a 

constant. 

 The converse is obvious; if f(x) = c, then f’(x) = 0. 

 Corollary 2: If f’(x) = g’(x) on an interval (a, b), then f(x) = g(x) + C on that interval, 

where C is a constant. 

 Once again the converse is obvious; if f(x) = g(x) + C, then f’(x) = g’(x). 

1 2 1 2

1 2

2 1 2 1

Proof of Corollary 1

Take any two points  and  in ( ,  ) where . Since ( ) 0 on ( ,  ), 

( ) satisfies the conditions of the mean value theorem on [ ,  ].

( ) ( ) ( )( ) for some

x x a b x x f x a b

f x x x

f x f x f c x x

 

    1 2

2 1

1

  in ( ,  ). 

( ) 0 since ( ) 0 throughout ( ,  ) ( ) ( ) 

Similarly  is equal to every other point  in ( ,  ) thus proving that ( ) is constant in ( ,  ).i

c x x

f c f x a b f x f x

x x a b f x a b

    

Proof of Corollary 2

Let ( ) ( ) ( ). Then at all points in ( ,  ) 

( ) ( ) ( ) 0 since ( ) ( ) on ( ,  )

By Corollary 1, ( )  (a constant)  ( ) ( )

h x f x g x a b

h x f x g x f x g x a b

h x C f x g x C

 

       

   
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Mean value theorem consequences: 

increasing and decreasing functions 
 f(x) is said to be increasing on an interval [a, b] if f(x) increases in value as x 

increases, i.e. for any pair of points x1 and x2, f(x1) < f(x2) when x1 < x2. 

 Definition implies that ∆x and ∆y have the same sign, hence f’(x) > 0 on (a, b). 

 f(x) is said to be decreasing on an interval [a, b] if f(x) decreases in value as x 

increases, i.e. for any pair of points x1 and x2, f(x1) > f(x2) when x1 < x2. 

 Definition implies that ∆x and ∆y have opposite signs, hence f’(x) < 0 on (a, b). 

 A function that is either increasing or decreasing (but not both) on an interval is said 

to be monotonic on that interval. 

 Corollary 3: Let f(x) be continuous on [a, b] and differentiable on (a, b). 

 If f’(x) > 0 on (a, b), then f(x) is increasing on [a, b].  

 If f’(x) < 0 on (a, b), then f(x) is decreasing on [a, b]. 

1 2 1 2 1 2

2 1 2 1 1 2

2 1

Proof of Corollary 3

Let  and  be two points in [ ,  ] with . Applying the mean value theorem to [ ,  ]

( ) ( ) ( )( ) for some  in ( ,  ).

Since 0, the right side has the s

x x a b x x x x

f x f x f c x x c x x

x x



  

 

2 1

2 1

ame sign as ( ).

If ( ) 0 on ( ,  ), then ( ) 0  ( ) ( ) that is function is increasing.

If ( ) 0 on ( ,  ), then ( ) 0  ( ) ( ) that is function is decreasing.

f c

f x a b f c f x f x

f x a b f c f x f x



    

    
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Increasing and decreasing functions 

(continued) 
 The definition for increasing and decreasing functions given by us is sometimes 

called strictly increasing and strictly decreasing respectively (NCERT text as well as 

IIT questions use this terminology). 

 In the context of this terminology: 

 f(x) is increasing if f(x1) ≤ f(x2) for x1 < x2. Note the use of “less than or equal to”. So 

f’(x) ≥ 0 for an increasing function (while f’(x) > 0 for a strictly increasing function). 

 f(x) is decreasing if f(x1) ≥ f(x2) for x1 < x2. So f’(x) ≤ 0 for a decreasing function. 

 When a function f(x) is monotonic (in the strict sense), then f(x) is one to one. Recall 

that a function is one to one, when each x in the domain is mapped to a different 

value by f (so if x1 ≠ x2, then f(x1) ≠ f(x2)).  
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First derivative test for distinguishing 

local extrema 
 Let c be a critical point of a function f(x), which is continuous in some interval I around c, and f’(x) 

exists in I, except possibly at c. As x increases from values less than c, to values more than c in I,  

 If f’ changes from positive to negative, then f has a local maximum at c. 

 Implies f(x) is increasing to the left of c, and decreasing to the right of c, so we expect c to 

be a local maximum (see Fig 1). 

 If f’ changes from negative to positive, then f has a local minimum at c. 

 Implies f(x) is decreasing to the left of c and increasing to the right of c, so we expect c to be 

a local minimum (Fig 2). 

 If f’ has the same sign on either side of c, then f has no local extremum at c. 

 f(x) is increasing or decreasing on both sides of c, hence there is no extremum at c (Fig 3). 

f’ < 0 f’ > 0 

x = 0 is a critical point where f’ 

does not exist (a minimum point)  

Fig 2: f(x) = |x| 

Fig 1: f(x) = 2 − x2 

f’ > 0 f’ < 0 

x = 0 is a critical point where  

f’ = 0 (a maximum point)  
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x = 0 is a critical point where f’(x) = 

0 but is not a local extremum  

f’ > 0 

f’ > 0 

Fig 3: f(x) = x3  



Second derivative test for distinguishing 

local extrema 
 If f’(c) = 0 and f’’(x) is continuous in an open interval that contains x = c,  

 If f’’(c) < 0, then f(x) has a local maximum at x = c 

 If f’’(c) > 0, then f(x) has a local minimum at x = c 

 If f’’(c) = 0, then the test fails – the point may have a local minimum or maximum or 

neither. 

 Proof 

 Consider f’’(c) < 0 scenario. Since f’’ is continuous around c, there is some interval I 

around c where f’’(x) < 0. This implies f’(x) is decreasing in I. Since f’(c) = 0, f’(x) > 0 for 

x < c in I and f’(x) < 0 for x > c in I. So f’(x) changes from positive to negative around c, 

and by the first derivative test, there is a local maximum at x = c. 

 The proof for f’’(c) > 0 is similar. 

 When f’’(c) = 0, we can’t conclude anything. e.g. at x = 0, f(x) = x3 has no extremum, 

whereas f(x) = x4 has a minimum. For this reason, we usually use the first derivative 

test in our examples. 
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Concavity and point of inflection 
 A function f(x) is called concave up on an open interval I, if f’(x) is increasing in I. This means  

that f’’(x) > 0 in I. Also the tangent to f(x) at any point P in I, is below f(x) around P (see Fig 2).  

 Similarly a function f(x) is called concave down on an open interval I, if f’(x) is decreasing in I. This 

means that f’’(x) < 0 in I. The tangent to f(x) at any point Q in I, is above f(x) around Q.  

 “Concave up” and “concave down” refers to the shape of graph in I. For example, 

 If f(x) = x2, then f’’(x) = 2. So the graph is concave up for all x, and this seems reasonable from 

its graph. 

 If f(x) = x3, then f’’(x) = 6x. So the graph is concave up for x > 0, and concave down for x < 0. 

The point x = 0, around which the concavity of the curve changes, is called a point of 

inflection. At the point of inflection, f’’(x) = 0 or it does not exist.  

 The change in the sign of f’’(x) around the inflection point, means that the point is a local 

extremum for f’(x) (by the first derivative test applied to f’(x)). 

 At a local maximum (assuming f’’(x) exists), we expect f(x) to be concave down, so f’’(x) < 0 

(consistent with the second derivative test).  Similarly at a local minimum, f(x) must be concave up, 

hence f’’(x) > 0. 
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Fig1: f(x) = x2  

f’’ = 2 > 0; so curve 

is concave up for 

all x 

f’’ < 0; so curve is concave 

down, and is below the 

tangent. 

Fig2: f(x) = x3  
f’’ > 0; so curve is 

concave up, and is 

above the tangent. 
P 

Q 



Examples 

3

2/3

Example 1 [IIT, 2008] : The total number of local maxima and minima of the function

( ) (2 ) ,    3 1

,       1 2

is  A) 0       B) 1       C) 2        D) 3

f x x x

x x

     

   

3

2

2/3

1/3

Solution: Let (2 )  for 3 1

3(2 ) 0 when 2

But  is always non-negative and does not change sign at 2, hence this is not a local extremum.

Let  for 1 2

2
 so it i

3

u x x

du
x x

dx

du
x

dx

v x x

dv
x

dx



     

    

 

   

 s undefined at 0

Also  is negative for 0 and positive for 0, hence 0 is local minimum.

Given the different definitions of ( ) on either side of 1,  we need to test this point as well. You

x

dv
x x x

dx

f x x



  

 

1 1

 can

verify that ( ) is continuous here, and from a differentiability viewpoint, we have

2
lim 3          lim

3

Hence ( ) is not differentiable at 1 but given that it increases bef

x x

f x

du dv

dx dx

f x x

  
  

  ore 1 and decreases after 1,

1 is a local maximum. Therefore the answer is C) 2.x

 

 
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Examples (continued) 
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Some more explanation is required for Example 1. A maximum occurs at x = −1, because it is 

continuous there, and the derivative changes sign. 

Consider f(x) = x in [0, 1] and (−x + 3) in (1, 3].  

The derivative changes from 1 to −1, as we go through x = 1. But x = 1 is not a local maximum, 

because f(1) < f(x) for x to the immediate right of x = 1, because of the discontinuity at that point.  

At x = 1, is the left hand derivative (LHD) equal to 1, and the right hand derivative (RHD) equal to −1, 

given that the two functions on either side of the point, have this slope?  

LHD is correct, but RHD is wrong. If you use the definition of RHD, you will see that RHD is undefined 

at x = 1.  

However in example 1), we evaluated the LHD and RHD at x = −1, using the limiting value of the 

derivative of u(x) and v(x) respectively (the functions defined on either side). This gives the correct 

answer, because f(x) is continuous at x = −1 (unlike the above example).  

Usually for problems involving simple functions, it is quicker and easier to solve them using graphs. If 

you have taken our course, this should be pretty straight-forward, but an explanation follows on next 

page.  



Examples (continued) 
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Example 2 [IIT 2007] In the following [x] represents the great integer less than or equal to x. Match 

the functions in Column 1 with their properties in Column 2. 

Column 1 Column 2 

A)  x|x| p)  continuous in (-1, 1) 

B)  |x|1/2 q)  differentiable in (-1, 1) 

C)  x + [x] r)  strictly increasing in (-1, 1) 

D)  |x – 1| + |x + 1| s) not differentiable at least at one point in (-1, 1) 

Example 1 (graphical solution): (2 + x)3 is x3 shifted to the left by 2 units. The 

function always increases, so we expect no local extremum from  −3 to −1.  

x2/3 is the third root of x2, so it is symmetric about the y-axis. We expect it to 

decrease from −1 to 0, and then increase from 0 to 2; so a minimum is 

expected at x = 0. From an extremum viewpoint, the concavity doesn’t matter. 

Near the boundary point x = −1, both functions approach the value 1.  

(2 + x)3 is increasing on the left, while x2/3 is decreasing on the right, so a 

maximum is expected at x = −1.  

Hence there are two local maxima and minima.  Graph of f(x) 

Solution: Note we need to analyze each function in (−1, 1) for continuity, differentiability and 

increasing behavior.  We will analyze one function at a time. Continued on next page... 



Examples (continued) 
2 2

2 2

A) ( )  for 0 and  for 0. 

 and  are continuous, and both approach (0) 0 as 0. So ( ) is continuous.

( ) 2  for 0 and 2  for 0. Both approach 0 as 0. Hence ( ) is differe

f x x x x x x x

x x f x f x

f x x x x x x f x

    

  

      ntiable.
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1/2 1/2

1/2 1/2

1/2 1/2

B) ( )  for 0 and ( )  for 0

Both  and ( )  are continuous, approaching (0) 0 as 0. So ( ) is continuous.

1 1
( )  for 0 and ( )  for 0. Since ( )  as 0  an

2 2

f x x x x x x

x x f x f x

f x x x x x f x x  

    

  

        d  as 0 ,

( ) is not differentiable at 0. It is differentiable elsewhere in ( 1, 1).

Also ( ) 0 for 0 and it is < 0 for 0,  ( ) decreases in ( 1, 0) and increases in (0, 1).

Therefore, prop

x

f x x

f x x x f x

 

 

    

erties p and s are true for function B.

For checking differentiability at x = 0, we can also start with the definition of Lf’(0) and Rf’(0), the left 

and right hand derivative respectively at x = 0.  

2 2

0 0 0 0 0

(0 ) (0) 0 0
(0) lim lim lim 0    and     (0) lim lim 0.

h h h h h

f h f h h
Lf h Rf h

h h h         

    
        

Since RHD and LHD are both zero; f(x) is differentiable at x = 0, apart from other points in (−1, 1).   

f’(x) is always positive, hence f(x) is strictly increasing (at x = 0, f’(x) = 0, but f(x) = 0 only here). 

Therefore properties p, q and r hold for function A. 



Examples (continued) 

C) ( ) [ ] 1 for ( 1, 0) and  for [0, 1)

( ) 1 as 0  and 0 as 0 . Hence function is not continuous 0. Therefore, it is also

not differentiable at 0. Since ( ) 1 elsewhere, function is 

f x x x x x

f x x x x

x f x

 

    

    

  increasing in ( 1, 1).

Therefore, properties r and s are true for function C.



D) ( ) 1 1 1 1 2 in ( 1,  1).

Hence it is differentiable and continuous in ( 1, 1). Being a constant, it is not increasing.

Therefore, properties p and q apply to function D.

f x x x x x         


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Example 3 [IIT 2005]: Let f(x) be a twice differentiable function such that f(x) = x2 for x = 1, 2, 3; then 

a) f’’(x) = 2 for all x in (1, 3)              b) f’’(x) = 2 for some x in (1, 3) 

c) f’’(x) = 3 for all x in (2, 3)              d) f’’(x) = f’(x) for some x in (2, 3) 

Solution: Consider the function g(x) = f(x) – x2. Note that g(1) = g(2) = g(3) = 0; and g(x) is twice 

differentiable. 

So we can apply Rolle’s theorem to g(x) in [1, 2] to say that g’(c1) = 0 for some c1 in (1, 2). We can 

also apply the theorem to [2, 3] to say that g’(c2) = 0 for some c2 in (2, 3).  

Next we can apply Rolle’s theorem to g’(x) in [c1, c2] to say that that g’’(c3) = 0 for some c3 in (c1, c2). 

Since (c1, c2) is contained in (1, 3), we can also say that c3 belongs to (1, 3).  

But g’’(x) = f’’(x) – 2; so g’’(c3) = 0 implies f’’(c3) = 2. So option b) is correct. 

As mentioned earlier, a rough graph of f(x) will help us to find the properties quickly. e.g. f(x) in B)  

is just √x for x ≥ 0, and a reflection of it in the y-axis for x < 0.  



Examples (continued) 
Example 4: A closed container is made from a cylinder of radius r and height h with a 

hemispherical dome at the top. What is the relationship between r and h that maximizes 

the volume for a given surface area? 

2
2 2

2 3

2 3
2 3 2 3

2

0

3
Surface area 2 2  (cylinder side + base + top). So 

2

2
Volume   (cylinder + top hemisphere)

3

3 2 2 5
( 3 )

2 3 2 3 2 6

5
0

2 2 5

Note

A r
A rh r r h

r

V r h r

A r r Ar r
V r r A r r

r

dV A r A
r

dr


  



 

 
   








   

 

 
       

 

    

0 0 0

2

0

 for r < ,  > 0 and for r > ,  < 0, hence  is a maximum.

2
3

3 5 5

2 5
2 2

5 5

dV dV
r r r

dr dr

A A
A

A r A
h r

r A A


 
 

 





    
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