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Lesson 11: Derivatives (Part 1) 
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Introduction 
 We are now ready to look at differential calculus. There are essentially two parts to 

calculus: differential calculus and integral calculus.  

 Differential calculus is concerned with finding the derivative of functions (we will soon 

see what a derivative is).  

 Integral calculus is concerned with finding the function, given its derivative. As we will 

see later, this is necessary to evaluate definite integrals, which are essentially sums 

with an infinite number of terms, where each term approaches zero. Such sums arise 

in science and engineering, and you will often see them in your study of physics.  

 To introduce the concept of derivative, let us go back to the concept of slope of a line, 

and tangent to a curve. 

 

SCIMS Academy 2 

We know that the slope m of a line passing through points 

(x1, y1) and (x2, y2) is defined as  

m = Δy/Δx = (y2 – y1) / (x2 – x1) = Δy’/Δx’ (see figure).  

Slope is independent of points chosen, since triangles 

PQR and P’Q’R’ are similar. 

Δy (read as “delta y”) refers to the change in y as we go 

from point P to point Q, and Δx refers to the corresponding 

change in x. 

P(x1, y1) 

Q(x2, y2) 
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Slope of a curve, and derivative 
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For the generic curve y = f(x), slope depends on the points P and Q chosen (on the curve) to 

measure it. However it is useful to define slope at a point P(a, f(a)) as follows: 

Draw a line through P and an adjacent point Q(a + h, f(a + h)); this line is called a secant. 

( ) ( )
Slope of secant PQ = 

y f a h f a

x h

  




P(a, f(a)) 

Q(a + h, f(a + h)) 

Q’ 
y = f(x) 

x 

y 
Slope of the curve at point P is defined as the limit of the 

secant slope, when h approaches 0 (that is Q approaches P).  

0

( ) ( )
Slope of curve = lim ( )

h

f a h f a
f a

h

 


The limit is called the derivative of f(x) at x = a, denoted by f’(a). 

Note the limit is the usual two sided limit, hence h can be 

positive or negative. 

The line through P(a, f(a)) with slope equal to f’(a) is called a tangent to the curve at P. The secant PQ 

becomes the tangent at P, when Q moves closer and closer to P (along the curve), so as to merge into P. 

( ) ( )
 is sometimes called the difference quotient.

y f a h f a

x h

  




It is the average rate of change of y with respect to x over the interval [a, a + h]. The derivative f’(a) can 

be considered as the instantaneous rate of change of y with respect to x, at x = a.  



Example, and derivative as a function 

 

2

2 2

0 0

Example: For ( ) ,  find the derivative at .

( ) ( ) ( )
Solution: 2

'( ) lim 2 2 lim 2
h h

f x x x a

f a h f a a h a
a h

h h

f a a h a h a
 

 

   
  

     
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Instead of evaluating the derivative at x = a, we could evaluate it at a generic point x in the domain of 

f(x). By doing this, the derivative becomes a function (denoted by f’(x)), whose value depends on x. 

We can then say that f’(a) (as in the above example) is the value of f’(x) at x = a. 

0

( ) ( )
( ) limSo 

h

f x h f x
f x

h

 
 

 The process of finding f’(x) is called differentiation. The domain of f’(x) is a subset of 

the domain of f(x). 

 If the limit exists at x = a, we say f is differentiable (has a derivative) at x = a.  

 If f’(x) exists at all points in the domain of f(x), we call f(x) a differentiable function. 

 A function is differentiable on an open interval, if it has a derivative at each point in 

the interval.  



Derivative as a function  (continued) 

0

( ) ( )
lim

called the right hand derivati  at .ve

h

f a h f a

h

x a



 



0

( ) ( )
lim

called the left hand derivati a .e  v t

h

f b h f b

h

x b



 


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A function is differentiable on a closed interval [a, b] if it is differentiable on the open interval (a, b) 

and at the endpoints, the following one sided limits exist (similar to continuity at an endpoint). 

Sometimes we will use the notation Rf’(c) and Lf’(c) to denote the right and left hand derivative 

respectively at x = c.  

Setting z = x + h in the derivative definition, gives an alternative expression for f’(x). When h → 0 

(h approaches 0), z – x → 0 or z → x. So we have: 

( ) ( )
( ) lim

z x

f z f x
f x

z x


 



When ( ), the derivative ( ) is also denoted as

( )
 or  or  or  or ( )

( ), the value of the derivative at , is also denoted as  

( )
 or 

x a x a

y f x f x

dy df df x
y Df x

dx dx dx

f a x a

dy df x

dx dx 





 



Derivative examples 

   
0 0

Example 1: Let ( )   where  and  are constants

( )
Derivative ( ) lim lim

h h

y f x mx c m c

m x h c mx c mh
f x m

h h 

  

   
   

0 0

Example: Let ( )

For 0,  ( ) , and using Example 1, ( ) 1

For 0,  ( ) , and using Example 1, ( ) 1

0 0
For 0,  the right hand derivative (limit) is lim lim 1

and the left han

h h

y f x x

x f x x f x

x f x x f x

h h
x

h h  

 

  

    

 
  

0 0

0 0
d derivative (limit) is lim lim 1

Since right hand and left hand derivatives are different, the function is not differentiable at 0.

h h

h h

h h

x

  

  
  


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1

( ) , where  is a positive intExample: 

lim  (using the result in the li

ege

mits les

r

son).
n n

z x

n

n

y

z

f x x n

dy
nx

xdx

x

z


















Derivative examples (continued) 

0 0

0 0

Example: ( ) , where 0

( )( )
'( ) lim lim

( )

( ) 1 1
lim lim

( ) 2

Note '( ) is defined for 0,  and is undefined at 0.

h h

h h

y f x x x

x h x x h x x h x
f x

h h x h x

x h x

h x h x x h x x

f x x x

 

 

  

     
 

 

 
  

   

 

7 SCIMS Academy 



Scenarios when derivative doesn’t exist 
 Scenario 1: Slope of the curve y = f(x) suddenly changes at a point (as in y = |x| at x 

= 0). Graph will have a “corner” and the right hand and left derivatives are not equal 

at the point. 

 Scenario 2: Slope of the curve approaches infinity (vertical tangent), as in y = √x at  

x = 0.  

 Scenario 3: Function is discontinuous. At the point of discontinuity, the right and left 

hand derivatives will differ. e.g. for the greatest integer function, at integral values of 

x, the right hand derivative is 0 and the left hand derivative doesn’t exist (approaches 

infinity). 
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Relationship between continuity and 

differentiability 

 If a function is discontinuous, it is not differentiable. 

 If a function is continuous, it may or may not be differentiable. 

 y = |x| is continuous but not differentiable at x = 0. 

 y = x2 is continuous as well as differentiable. 

 If a function f(x) is differentiable at x = a, then it is continuous x = a (as proved below). 

0

0 0 0

0 0

Proof: We need to show that lim ( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( )   where 0

( ) ( )
lim ( ) lim ( ) lim

( ) ( )
( ) lim lim ( ) ( ).0 ( )

h

h h h

h h

f a h f a

f a h f a
f a h f a f a h f a f a h h

h

f a h f a
f a h f a h

h

f a h f a
f a h f a f a f a

h



  

 

 

 
        

  
     

 

 
     
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Sum rule for derivatives 

( )d f g df dg

dx dx dx


 

   
0

0

0 0

( ) ( ) ( ) ( )( )
Proof: lim

( ) ( ) ( ) ( )
lim

( ) ( ) ( ) ( )
lim lim

h

h

h h

f x h g x h f x g xd f g

dx h

f x h f x g x h g x

h h

f x h f x g x h g x df dg

h h dx dx





 

    


    
  

 

   
   
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Let us now consider the rules for finding the derivative, when functions are combined in some 

way like addition or multiplication. 

Sum rule: If f(x) and g(x) are differentiable functions, then the sum f(x) + g(x) is differentiable at 

every point where f and g are both differentiable. At these points: 



Constant multiple and difference rule for 

derivatives 

 

 

If  is a differentiable function of   is a constant

(

and ,  then

)

c

d cf x df
c

dx x

f x x

d


     

If ( ) and ( ) are differentiable functions, then the derivative of their difference is  

( 1) 1

( 1)

f x g x

d f g d gdf

dx dx dx

df

d f g

dx

df dg

dx dx

dg

dx dx

   
  

   



 
0 0

0 0

( ) ( ) ( ) ( ) ( )
Proof: lim lim

( ) ( )
lim lim

h h

h h

d cf x cf x h cf x f x h f x
c

dx h h

f x h f x df
c c

h dx

 

 

    
   

 

 
  
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Product rule for derivatives 

 

At points where both ( ) and ( ) are differentiable

d fg dg df
f g

dx dx

f x

dx

x g

 

 

   

0

0

0

0

( ) ( ) ( ) ( )
Proof: lim

Subtract and add ( ) ( ) to the numerator.

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
lim

( ) ( ) ( ) ( ) ( ) ( )
lim

( ) (
lim ( )

h

h

h

h

d fg f x h g x h f x g x

dx h

f x h g x

f x h g x h f x h g x f x h g x f x g x

h

f x h g x h g x g x f x h f x

h

g x h g
f x h









  




      


     


 
 

0

0

) ( ) ( ) ( ) ( )
lim ( ) ( ) ( )   

 Note lim ( ) ( ) since ( ) is differentiable, and hence continuous.

h

h

x f x h f x dg x df x
g x f x g x

h h dx dx

f x h f x f x





 
  

 
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Quotient rule for derivatives 

2

At points where both ( ) and ( ) are differentiable, and ( ) 0

df dg
g f

d f dx dx

d

f x g x x

g

g

x g




 

 
 

   

0

0

0

0

1 ( ) ( )
Proof: lim

( ) ( )

( ) ( ) ( ) ( )
lim

( ) ( )

Subtract and add ( ) ( ) to the numerator

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
lim

( ) ( )

lim

h

h

h

h

d f f x h f x

dx g h g x h g x

f x h g x f x g x h

hg x g x h

f x g x

f x h g x f x g x f x g x h f x g x

hg x g x h

g









   
    

   

  




    





0

2

0

( ) ( ) ( ) ( ) ( ) ( )
( ) lim ( ) ( ) ( )

lim ( ) ( ) [ ( )]

h

h

f x h f x g x h g x df x dg x
x f x g x f x

h h dx dx

g x g x h g x





   
 



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Chain rule for composite functions 

 
( )

( ) ( )
u g x

dy dy du
f g x g x

dx du dx

    g f 
x u = g(x) y = f(u) =  

f(g(x)) 

 We now see how to compute the derivative of a composite function. A composite 

function y = f(g(x)) can be written as y = f(u) where u = g(x).  

 If f(u) is differentiable at u = g(x), and g(x) is differentiable at x (corresponding to the 

value of u), then the composite function y = f(g(x)) is differentiable at x, with the 

derivative given by: 

0 0 0 0

0
( )

lim lim lim lim

lim ( ( )) ( )

The only flaw in this "proof" is that  can be 0, even when  is not (and hence we can 

be d

x x x x

u
u g x

dy y y u y u

dx x u x u x

y du dy du
f g x g x

u dx du dx

u x

       

 


    
   

    

 
    

 

 

ividing by 0). The actual proof is on the next page, and is optional.

 To understand this, let x change by ∆x. We then have 

 ∆u = g(x + ∆x) – g(x) and 

 ∆y = f(u + ∆u) – f(u) where u = g(x) 

 As ∆x→0, ∆u→0 since u = g(x) is differentiable (and hence continuous) at x. 
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Chain rule (continued) and examples 

2

2 5

5 2

4 2 4

1
( )

Example: Let ( ) ( 1) . Find ( ).

We can write the above as ( )  where ( ) 1

5 2 10 ( 1)
x

u g x

y f x x f x

y h u u u g x x

dy dy du
u x x x

dx du dx 


  

    

     

 

1 1

2 2

2 1

1

Proof  (Part 2)

Writing the composite function ( )  as

( ) where ( )

( ( ) )  where 0 when 0

( ( ) )  where 0 when 0

( ( ) )( ( ) )

( ) ( ) ( ) (

y f g x

y f u u g x

u g x x x

y f u u u

y f u g x x

y
f u g x f u g x

x

 

 

 





 

      

      

     


     


2 1 2

0

)

lim ( ) ( ) ( ( )) ( )
x

dy y
f u g x f g x g x

dx x

  

 




     



0 0

Proof (Part 1) 

Consider a function ( ). Then 

( ) ( )
( ) lim lim  

where ( ) ( )

Let ε be the difference between the difference quotien

[Both parts of proof are optiona

t

l

 

a

]

x x

y f x

y f x x f x
f x

x x

y f x x f x

   



   
  

 

    

0 0

nd the derivative at (the chosen) , 

i.e. ( )

lim ε = lim ( ) ( ) ( ) 0

We use the above to prove the chain 

( '( )

rule. 

)

x x

x

y
f x

x

y
f x f

y f x x

x f x
x



   


  



 
      

 

   
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Examples (continued) 

1
1

1

2

Example: . Find ( ).

1
Let , hence  is a positive integer. Then ( )

0 1
Applying the quotient rule for d

( )  where  is a negat

erivatives

ive integer

( ) 

n

m

m m

n

nm

m

f x x n

f x

f x

m n m f x x
x

x mx
mx

x
nx 


 



   

  
  



 

3 2

3 2 7

3 2

7

8

5 3

3 2

1
Example: Let  ( ) . Find ( ).

( 5 3 )

1
We can write ( )  where ( ) 5 3

( ) 7          (applying chain rule)

 is a sum of the two functions 5  and 3 ,  and 

x x x

y f x f x
x x x

y h u u g x x x x
u

du
f x u

dx

u x x x



 

 
 

     

   



 

3 3

2 3

3

2

8 3
3 2

5  is  composed with 5 . 

1
Hence (3 5) 6        (chain rule applied to 5 )

2 5

7 3 5
( ) 6

2 55 3

x x x x x

du
x x x x

dx x x

x
f x x

x xx x x

 

    


  
   

  
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 Examples (continued) 
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Usually we do the differentiation of a composite function in a single step, starting with the 

“outermost function” and proceeding inwards as shown below.  

5

4 2

4 4
5

4 2 3 4 2

2 3/2 5
4

2
Example: Let ( ) 7 1

2 1 2 2 2 1
( ) 5 7 1 4 14 5 7 1 14

2 22

y f x x x
x

x
f x x x x x x x x

x xx x xx
x

 
      

 

 
        
                                 
 

Note we can write y = u5 (the outermost function), where u = √v + 7x2 + 1 and v = x4 + 2/x.    

The calculus of non-algebraic functions is available to those who subscribe to our course. However, by 

knowing some standard formulae (given below), we should have no problem differentiating functions 

composed from them. 

Function f(x) Derivative f’(x) 

sin x cos x 

cos x −sin x 

tan x sec2x 

cot x −csc2x 

sec x sec x tan x 

Function f(x) Derivative f’(x) 

csc x −csc xcot x 

ex ex 

ln|x| 1/x 

ax   (where a > 0) axlna 

logax  (a > 0, a ≠ 1) 1/(xlna) 



Other functions and their derivatives 
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1 1 1 1 1 1

2 22 2 2 2

sin cos tan cot sec cs

1 1 1 1 1 1

1

c

11 1 1 1

x x x x x

x xx x x x x x

x     


  

    

f(x)

f (x)

Those who have subscribed to our course should know all the above functions very well (we will also 

prove many of the derivative formulae in a later lesson). For others, a few points are given below. 

• Trigonometric functions like sin x are usually defined for all values of angle x. x is measured in 

radians, where π radians = 180o. For example, x = π/4 implies x = 180o/4 = 45o.  

• Functions like sin−1x are called inverse trigonometric functions. By definition, if y = sin−1x, then x = 

siny (similarly for the other functions as well). So y is an angle in radians, e.g. sin-11 = π/2. Their 

domains depend on the function, for example sin−1 and cos−1 are defined only for [−1, 1]. 

• ex and ax are called exponential functions, where e is special irrational number, which is roughly 

equal to 2.72. The functions are defined for all values of x.  

• lnx is the logarithmic function for which the base is e (so ln x = logex). It is defined for x > 0. 

Example: Find the derivative of f(x) = tanx, using the derivative of sinx and cosx (from the table). 

2

2 2

sin
( ) tan . Using quotient rule, 

cos

cos cos (sin sin ) 1
( ) sec

cos cos

x
f x x

x

x x x x
f x x

x x

 

  
   



Examples (continued) 
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2

2 2 2

Example: Using the derivative of ln , find ( ) for ( ) ln( 5)

1 1 1
( ) 1 2

5 2 5 5

x f x f x x x

f x x
x x x x

   

 
       

    

The outermost function is ln t, where t = x + (x2 + 5)1/2. Note t > 0 for all x. 

1

1

2 2 2 2

1
Example: Find (1) when ( ) tan  where  is a constant.

Using the derivative formula for tan ,  we have

1 1 1 1 1
( ) (1)

1
1

x
f f x a

a a

x

f x f
a a a x ax

a





 

      
  

  
 



Examples (continued) 
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[IIT 1986] Let f(x) be defined in the interval [−2, 2] such that  

f(x) = −1    in [−2, 0] and 

         x – 1 in (0, 2].  

Let g(x) = f(|x|) + |f(x)|. Determine the differentiability of g(x) in (−2, 2). 

Solution: When we have a function like g(x), defined using absolute values of other simple 

functions like f(x), it is usually easy to sketch g(x) to make our conclusion. 

x 

y 

1 

−1 f(x) 

x 

y 

1 

−1 f(|x|) 

−1 
x 

y 

1 

−1 |f(x)| 

x 

y 

1 

−1 g(x) 

Students of our course should have no problem in understanding the above graphs. However an 

explanation is given below. 

When x ≥ 0, f(|x|) is the same as f(x). For x < 0, f(|x|) = f(−x); so to build the graph for x < 0, we 

reflect the graph for x > 0 in the y-axis. 

|f(x)| reflects the negative part of f(x) in the x-axis, while retaining the positive part of f(x). 

g(x) = −x for [–2, 0) and 0 for [0, 1) and 2x – 2 for [1, 2]. 

From the graph of g(x), it is obvious that it is not differentiable at x = 0, 1. Everywhere else in (−2, 2), 

it has a derivative. 



Higher order derivatives and an example 

2

2

Let ( ) and ( ) be its derivative.

Since ( ) is a function,  it can be differentiated to give the second derivative of . 

Various notations for the 2nd derivative are  ( )

y f x f x

f x f

d y d dy
f x

dx dx dx





 
    

 

2 ( )
dy

D f x y
dx


  

( 1) ( )

Similarly ( )  is a function that can be differentiated again and this process can be repeated. 

The th derivative is written as ( )
n

n n n

n

f x

d y d
n y y D f x

dx dx





  

4

2
3 2

2

3 4

3 4

Example: Let ( ) . We then have

4         12

24      24

All the other higher derivatives are 0.

y f x x

dy d y
x x

dx dx

d y d y
x

dx dx

 

 

 
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Implicit differentiation 
 Consider the equation y4 – 4xy3 + x2 = 5. 

 We cannot put it in the form y = f(x) to find dy/dx. However, we can consider it as 

implicitly defining one or more functions of x and proceed as follows. 

 Differentiate both sides with respect to x. 

 Treat y as a differentiable function of x. 

 Any function of y such as y4 is differentiated using the chain rule. 

 Collect all terms involving dy/dx together, and solve the equation for dy/dx. 

 

4 3 2

3
3 3 2 3 2 3

2

Example: Find /  for 4  5.

Differentiating both sides with respect to 

2
4 4 3 2 0 2 6 2

2 ( 3 )

dy dx y xy x

x

dy dy dy dy y x
y y x y x y xy y x

dx dx dx dx y y x

  

 
           

 
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  

/

/ 1

/ 1 1

1 1

// 1

Example: Find /  for  where /  is a rational number

. Differentiating implicitly, we get 

Hence the derivative formula for

p q q p q p

p p

p p qp q q

p q

p q

y x

dy p
x

d

dy dx p q

dy
y x y x qy px

dx

px p

x

x

q xqx qx

 


 



   

  






1  (which is ) is valid for rational powers of  also.n nx nx x



Implicit differentiation examples 

(continued) 
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2 2 2 2

1 2

1 2

Example: The equation 36 defines two functions 36  and 36 .

The equation is a circle with  representing the part above  axis, while  representing the 

part below. Differentiating i

x y y x y x

y x y

      

1 2

mplicitly, we have

2 2 0 . This expression for derivative applies to both  and .
dy dy x

x y y y
dx dx y


   

The above result is consistent with what we can conclude from coordinate geometry. Since the circle 

center is at the origin, the slope of a radial line to the point (x, y) on the circumference is y/x. The 

tangent is perpendicular to the radius, so its slope is –x/y (same as dy/dx above). 

Example : We will see in a later lesson that a second degree equation in x and y given by ax2 + 2hxy 

+ by2 + 2gx + 2fy + c = 0 represents a conic section (including degenerate forms like a pair of straight 

lines). Find the slope of the tangent drawn at a point (x, y) on the curve. 

Solution: Tangent slope at (x, y) is the value of dy/dx at this point. Differentiating implicitly, we have 

2 2 2 2 2 2 0
dy dy dy dy ax hy g

ax hy hx by g f
dx dx dx dx hx by f

 
        

 



Differential 
 Consider the function y = f(x). The differential of y denoted by dy, is defined as 

dy = f’(x)∆x.  

 The value of dy depends on x and ∆x. 

 Since y = f(x), we may also write d(f(x)) = f’(x)∆x, where d(f(x)) is called the differential 

of f. 

 When y = f(x) = x, we have f’(x) = 1, and dy = ∆x. Since y = x, we can also write  

dy = dx = ∆x. The differential dx of the independent variable x, is the same as its 

increment (and this is sometimes taken as a definition).  

 So for the generic function y = f(x), we may write dy = f’(x)dx. 

 To interpret the differential dy, let us take x = c. We then have dy = f’(c)∆x   (1) 

 Consider the tangent through (c, f(c)). Its equation (point slope form) is:  

y – f(c) = f’(c)(x – c)  (2) 

 Using 1) and 2), when ∆x = x – c, we have dy = y – f(c). So dy is the change in y on the 

tangent line, when x changes from c by ∆x (see figure). 
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c 

f(c) 

y = f(x) 

x 

∆x 

dy 
∆y 

f(x) 
The tangent line at x = c, approximates f(x) in the vicinity of c. 

So f(x) ≅ f(c) + f’(c)(x – c) when x is close to c. 

It is called a linear approximation to f(x) at x = c (linear, because only 

the first power of x – c appears). 



Example 
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4

4

Example: Use differentials to evaluate 82.

Solution: Let ( ) . We want (82),  and we know (81) 3. Using differentials, implies using

the linear approximation at 81 to evaluate (82). 

We have (

f x x f f

x f

f x

 





 

3/4 3/4

1 1 1
)  (81)

1084 4 81

(82)  (81) (81) 82 81 3 1/108 3.009.

f
x

f f f

   


     

Suppose y = f(x), where x = g(t).  

We then have y = f(g(t)), and the differential dy = f’(g(t))g’(t)dt     (1) 

Also the differential dx = g’(t)dt. Substituting in 1), we get dy = f’(x)dx  (2) 

In Eq 2), it is incorrect to replace dx by ∆x. However, if x is the independent variable, then we can 

replace dx by ∆x (as seen earlier).   

The above means that Eq 2) between the differentials of y and x is always valid, whether or not x is 

the independent variable. On the other hand, the relation dy = f’(x)∆x is valid, only when x is the 

independent variable. 


